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Facile access to 4-(1-alkynyl)-2(5H)-furanones by
Sonogashira coupling of terminal acetylenes with b-tetronic
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Département de Chimie, Université Laval, Quebec City, Que., Canada G1K 7P4

Received 5 October 2006; revised 28 October 2006; accepted 30 October 2006
Available online 20 November 2006
Abstract—A mild and convenient synthesis of 4-(1-alkynyl)-2(5H)-furanones has been achieved by Sonogashira or Heck-type
alkynylation of b-tetronic acid bromide. As an illustration of this methodology, the natural product cleviolide was prepared in
two steps and 78% overall yield.
� 2006 Elsevier Ltd. All rights reserved.
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The development of practical methods for constructing
4-substituted 2(5H)-furanones is a prominent objective
in synthetic chemistry due to the significant biological
activities of many natural and unnatural products con-
taining this moiety.1 An appealing approach to these
compounds, suitable for parallel synthesis, involves the
attachment of a C4-substituent onto a preformed fura-
none ring. This is best accomplished by cross-coupling
tactics,2 as first demonstrated by Negishi and co-workers
during a total synthesis of the 4-homoallyl-2(5H)-fura-
none makupalide.3 Recently, new protocols have been
developed for installing a variety of C4-substituents
including aryl,4 alkenyl,5 alkyl,6 benzyl4d,7 and cycloprop-
yl8 among others.9

A few simple 4-(1-alkynyl)-2(5H)-furanones (2) have
also been prepared in this manner, notably by palla-
dium-catalysed cross-coupling of b-tetronic acid bro-
mide (1) with tributylstannylacetylenes,10 1-alkynylzinc
chlorides,11 and more recently, potassium alkynyltri-
fluoroborates12 (Scheme 1). For example, the structurally
unusual monoterpene cleviolide (2, R = Me2C@CH), a
constituent of the plant Senecio clevelandii13 and an
attractive target for testing new methodologies,14 has
been synthesized using the Stille coupling reaction
depicted in Scheme 110b as well as its inverse variant.15
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Although some of these methods have been shown to
be efficient,10,12 the preparation of the requisite tin or
boron acetylides is an obvious inconvenience, especially
when other sensitive functional groups are present. In
addition, the frequently used Stille reaction produces
toxic organotin by-products which are difficult to
remove even on a small scale.

Intrigued by the lack of literature reports on the alkynyl-
ation of bromide 1 with terminal acetylenes,16,17 we
decided to explore this process as a potentially more util-
itarian, direct pathway to 4-(1-alkynyl)-2(5H)-furanones
(2). Herein we report, that under the appropriate condi-
tions, a variety of terminal acetylenes undergo smooth
coupling with 1 at room temperature to provide 2 in
good to high yields (Table 1). We also describe an appli-
cation of this methodology to an exceptionally simple
and efficient synthesis of cleviolide.

Initial attempts to couple 1 with phenylacetylene under
classical conditions used for the Sonogashira reaction,
for example, treatment of the coupling partners with
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Table 1. Preparation of 4-(1-alkynyl)-2(5H)-furanones from b-tetronic
acid bromide and terminal acetylenes
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Method A or B

Entry R Product Methoda Isolated
yieldb (%)

1 Ph 2a A 71
2 p-F–Ph 2b A 74
3 n-octyl 2c A 80
4 t-Bu 2d A 73

5 2e A 65

6 THPOCH2 2f A 77
7 t-BuOCHMe 2g A 86
8 HOCH2CH2 2h A 50
9 B 63

10
OH

2i A 62
11 B 78

12

OH
2j B 81

a Method A: bromide (1), PdCl2(PPh3)2 (10 mol %), CuI (2 mol %),
THF, 0.5 h, rt, then i-Pr2NH, 1-alkyne, 16 h, rt. Method B: Pd(OAc)2

(3 mol %), TPPMS (5 mol %), Et3N, MeCN/H2O (15:1), 20 h, rt.
b All yields refer to isolated products after flash chromatography.
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PdCl2(PPh3)2, CuI and diisopropylamine in THF at var-
ious temperatures, or heating 1 with the metal salts and
base in THF before adding the acetylene,18 provided the
desired product 2a in only 10–20% yield.19 Further
experimentation revealed that by simply altering the
order of addition (Table 1, method A),20 the yield of 2a
could be substantially improved without a need for heating,
strong bases or expensive phosphine additives. Using
this procedure, several 4-(1-alkynyl)-2(5H)-furanones
(2a–i)20 were readily prepared in a single step from com-
mercially available acetylenes. Yields were generally
good with aryl, alkyl, alkenyl and protected hydroxy-
alkyl acetylenes (65–86%), but less so with substrates
bearing a free hydroxyl group (50–62%; entries 8 and
10). However, we were able to prepare hydroxyalkynyl-
furanones 2h and 2i more efficiently (entries 9 and 11) by
Heck-type alkynylation of 1 (a.k.a. copper-free Sono-
gashira reaction) using the procedure of Genêt et al.21

which employs palladium acetate in conjunction with
an inexpensive water-soluble ligand such as sodium
triphenylphoshine monosulfonate (TPPMS, method
B).22 Likewise, alcohol 2j was prepared from bromide
1 and 4-methyl-1-pentyn-3-ol in 81% yield (entry 12).22

Heating 2j with phosphorus pentoxide in benzene
cleanly provided cleviolide (96% yield, Scheme 2) whose
mp (63–64 �C) and NMR data were in excellent agree-
ment with those reported in the literature.10b,15b

In conclusion, we have developed a methodology that
allows direct and easy access to a variety of 4-(1-alkyn-
yl)-2(5H)-furanones from commercial acetylenes. The
foregoing alkynylation procedures are operationally
simple, do not require strong bases and work well at
room temperature. Moreover, the effectiveness of the
water-soluble Pd(OAc)2–TPPMS catalyst, as demon-
strated by the straightforward synthesis of cleviolide,
renders this methodology both ‘green’ and practical
for potential large-scale applications.
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quebeke, E.; Simon, G.; André, A.; Dewelle, J.; El Yazidi,
M.; Bruyneel, F.; Tuti, J.; Nacoulma, O.; Guissou, P.;
Decaestecker, C.; Braekman, J.-C.; Kiss, R.; Darro, F. J.
Med. Chem. 2005, 48, 849–856, and references cited
therein; (g) Bousserouel, H.; Litaudon, M.; Morleo, B.;
Martin, M.-T.; Thoison, O.; Nosjean, O.; Boutin, J. A.;
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